arXiv Analytics

Sign in

arXiv:2010.06621 [astro-ph.HE]AbstractReferencesReviewsResources

Monte Carlo simulations for the ANTARES underwater neutrino telescope

The ANTARES Collaboration, A. Albert, M. André, M. Anghinolfi, G. Anton, M. Ardid, J. -J. Aubert, J. Aublin, B. Baret, S. Basa, B. Belhorma, V. Bertin, S. Biagi, M. Bissinger, J. Boumaaza, M. Bouta, M. C. Bouwhuis, H. Branzas, R. Bruijn, J. Brunner, J. Busto, A. Capone, L. Caramete, J. Carr, S. Cecchini, S. Celli, M. Chabab, T. N. Chau, R. Cherkaoui El Moursli, T. Chiarusi, M. Circella, A. Coleiro, M. Colomer-Molla, R. Coniglione, P. Coyle, A. Creusot, A. F. Diaz, G. de Wasseige, A. Deschamps, C. Distefano, I. Di Palma, A. Domi, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, N. El Khayati, A. Enzenhofer, A. Ettahiri, P. Fermani, G. Ferrara, F. Filippini, L. Fusco, P. Gay, H. Glotin, R. Gozzini, K. Graf, C. Guidi, S. Hallmann, H. van Haren, A. J. Heijboer, Y. Hello, J. J. Hernandez-Rey, J. Hossl, J. Hofestadt, F. Huang, G. Illuminati, C. W. James, M. de Jong, P. de Jong, M. Jongen, M. Kadler, O. Kalekin, U. Katz, N. R. Khan-Chowdhury, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, R. Le Breton, D. Lefevre, E. Leonora, G. Levi, M. Lincetto, D. Lopez-Coto, S. Loucatos, J. Manczak, M. Marcelin, A. Margiotta, A. Marinelli, J. A. Martinez-Mora, S. Mazzou, K. Melis, P. Migliozzi, M. Moser, A. Moussa, R. Muller, L. Nauta, S. Navas, E. Nezri, A. Nunez-Castineyra, B. O'Fearraigh, M. Organokov, G. E. Pavalas, C. Pellegrino, M. Perrin-Terrin, P. Piattelli, C. Poirè, V. Popa, T. Pradier, N. Randazzo, S. Reck, G. Riccobene, F. Salesa, A. Sanchez-Losa, D. F. E. Samtleben, M. Sanguineti, P. Sapienza, J. Schnabel, F. Schussler, M. Spurio, Th. Stolarczyk, B. Strandberg, M. Taiuti, Y. Tayalati, T. Thakore, S. J. Tingay, B. Vallage, V. Van Elewyck, F. Versari, S. Viola, D. Vivolo, J. Wilms, A. Zegarelli, J. D. Zornoza, J. Zuniga

Published 2020-10-13Version 1

Monte Carlo simulations are a unique tool to check the response of a detector and to monitor its performance. For a deep-sea neutrino telescope, the variability of the environmental conditions that can affect the behaviour of the data acquisition system must be considered, in addition to a reliable description of the active parts of the detector and of the features of physics events, in order to produce a realistic set of simulated events. In this paper, the software tools used to produce neutrino and cosmic ray signatures in the telescope and the strategy developed to represent the time evolution of the natural environment and of the detector efficiency are described.

Related articles: Most relevant | Search more
arXiv:2208.08849 [astro-ph.HE] (Published 2022-08-18)
Bridging the gap between Monte Carlo simulations and measurements of the LISA Pathfinder test-mass charging for LISA
arXiv:1701.07289 [astro-ph.HE] (Published 2017-01-25)
Combined Magnetohydrodynamic- Monte Carlo Simulations of Proton Acceleration in Colliding Wind Binaries
arXiv:1512.00463 [astro-ph.HE] (Published 2015-12-01)
Monte Carlo Simulations of the Photospheric Process