arXiv Analytics

Sign in

arXiv:2010.01228 [math.CO]AbstractReferencesReviewsResources

The Szemerédi-Petruska conjecture for a few small values

Adam S. Jobson, André E. Kézdy, Jenő Lehel

Published 2020-10-02Version 1

Let H be a 3-uniform hypergraph of order n with clique number k such that the intersection of all maximum cliques of H is empty. For fixed m=n-k, Szemer\'edi and Petruska conjectured the sharp bound $n\leq {m+2\choose 2}$. In this note the conjecture is verified for m=2,3 and 4.

Related articles: Most relevant | Search more
arXiv:1904.04921 [math.CO] (Published 2019-04-09)
On a conjecture of Szemerédi and Petruska
arXiv:1709.07159 [math.CO] (Published 2017-09-21)
Chromatic number, Clique number, and Lovász's bound: In a comparison
arXiv:1209.3455 [math.CO] (Published 2012-09-16)
On the spectral moment of graphs with given clique number