arXiv Analytics

Sign in

arXiv:2010.00816 [astro-ph.GA]AbstractReferencesReviewsResources

Quantifying the impact of the Large Magellanic Cloud on the structure of the Milky Way's dark matter halo using Basis Function Expansions

Nicolas Garavito-Camargo, Gurtina Besla, Chervin F. P. Laporte, Adrian M. Price-Whelan, Emily C. Cunningham, Kathryn V. Johnston, Martin D. Weinberg, Facundo A. Gomez

Published 2020-10-02Version 1

Indications of disequilibrium throughout the Milky Way (MW) highlight the need for compact,flexible, non-parametric descriptions of phase--space distributions of galaxies. We present a new representation of the current Dark Matter (DM) distribution and potential derived from N-body simulations of the Milky Way and Large Magellanic Cloud (LMC) system using Basis Function Expansions (BFEs). We incorporate methods to maximize the physical signal in the representation. As a result, the simulations of $10^8$ DM particles representing the MW--LMC system can be described by 354 coefficients. We find that the LMC induces asymmetric perturbations (odd l, m) to the MW's halo, which are not well-described by oblate, prolate, or triaxial halos. Furthermore, the energy in high-order even modes (l,m $\geq$ 2) is similar to average triaxial halos found in cosmological simulations. As such, the response of the MW's halo to the LMC must be accounted for in order to recover the imprints of its assembly history. The LMC causes the outer halo ($\geq$ 30 kpc) to shift from the disk center of mass (COM) by $\sim$15-25 kpc at present day, manifesting as a dipole in the BFE and in the radial velocities of halo stars. The shift depends on the LMC's infall mass, the distortion of the LMC's halo and the MW halo response. Within 30 kpc, halo tracers are expected to orbit the COM of the MW's disk, regardless of LMC infall mass. The LMC's halo is also distorted by MW tides, we discuss the implications for its mass loss and the subsequent effects on current Magellanic satellites.

Comments: 35 pages, 26 figures, comments are welcome. Submitted to ApJ
Categories: astro-ph.GA
Related articles: Most relevant | Search more
arXiv:1302.6285 [astro-ph.GA] (Published 2013-02-26, updated 2013-03-15)
Photometric and Spectroscopic Properties of Novae in the Large Magellanic Cloud
arXiv:1609.08175 [astro-ph.GA] (Published 2016-09-26)
OGLE Collection of Star Clusters. New Objects in the Outskirts of the Large Magellanic Cloud
M. Sitek et al.
arXiv:1609.04823 [astro-ph.GA] (Published 2016-09-15)
Orbits of Massive Satellite Galaxies: I. A Close Look at the Large Magellanic Cloud and a New Orbital History for M33