arXiv Analytics

Sign in

arXiv:2009.10916 [cs.CV]AbstractReferencesReviewsResources

CLASS: Cross-Level Attention and Supervision for Salient Objects Detection

Tang Lv, Bo Li

Published 2020-09-23Version 1

Salient object detection (SOD) is a fundamental computer vision task. Recently, with the revival of deep neural networks, SOD has made great progresses. However, there still exist two thorny issues that cannot be well addressed by existing methods, indistinguishable regions and complex structures. To address these two issues, in this paper we propose a novel deep network for accurate SOD, named CLASS. First, in order to leverage the different advantages of low-level and high-level features, we propose a novel non-local cross-level attention (CLA), which can capture the long-range feature dependencies to enhance the distinction of complete salient object. Second, a novel cross-level supervision (CLS) is designed to learn complementary context for complex structures through pixel-level, region-level and object-level. Then the fine structures and boundaries of salient objects can be well restored. In experiments, with the proposed CLA and CLS, our CLASS net. consistently outperforms 13 state-of-the-art methods on five datasets

Related articles: Most relevant | Search more
arXiv:2401.02418 [cs.CV] (Published 2024-01-04)
Learning to Prompt with Text Only Supervision for Vision-Language Models
arXiv:2304.07193 [cs.CV] (Published 2023-04-14)
DINOv2: Learning Robust Visual Features without Supervision
Maxime Oquab et al.
arXiv:2406.20081 [cs.CV] (Published 2024-06-28)
Segment Anything without Supervision