arXiv Analytics

Sign in

arXiv:2009.09958 [math.GR]AbstractReferencesReviewsResources

Embedding theorems for solvable groups

Vitaly Roman'kov

Published 2020-09-21Version 1

In this paper, we prove a series of results on group embeddings in groups with a small number of generators. We show that each finitely generated group $G$ lying in a variety ${\mathcal M}$ can be embedded in a $4$-generated group $H \in {\mathcal M}{\mathcal A}$ (${\mathcal A}$ means the variety of abelian groups). If $G$ is a finite group, then $H$ can also be found as a finite group. It follows, that any finitely generated (finite) solvable group $G$ of the derived length $l$ can be embedded in a $4$-generated (finite) solvable group $H$ of length $l+1$. Thus, we answer the question of V. H. Mikaelian and A.Yu. Olshanskii. It is also shown that any countable group $G\in {\mathcal M}$, such that the abelianization $G_{ab}$ is a free abelian group, is embeddable in a $2$-generated group $H\in {\mathcal M}{\mathcal A}$.

Comments: 11 pages
Categories: math.GR
Subjects: 20F16, 20E22
Related articles: Most relevant | Search more
arXiv:1105.0475 [math.GR] (Published 2011-05-03)
A new solvability criterion for finite groups
arXiv:1307.2175 [math.GR] (Published 2013-07-05, updated 2013-08-23)
Finite groups whose prime graphs are regular
arXiv:1311.1383 [math.GR] (Published 2013-11-06, updated 2014-12-17)
Positions of characters in finite groups and the Taketa inequality