arXiv Analytics

Sign in

arXiv:2009.09602 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Long-lived populations of momentum- and spin-indirect excitons in monolayer WSe$_2$

Shao-Yu Chen, Maciej Pieczarka, Matthias Wurdack, Eliezer Estrecho, Takashi Taniguchi, Kenji Watanabe, Jun Yan, Elena A. Ostrovskaya, Michael S. Fuhrer

Published 2020-09-21Version 1

Monolayer transition metal dichalcogenides are a promising platform to investigate many-body interactions of excitonic complexes. In monolayer tungsten diselenide, the ground-state exciton is dark (spin-indirect), and the valley degeneracy allows low-energy dark momentum-indirect excitons to form. Interactions between the dark exciton species and the optically accessible bright exciton (X) are likely to play significant roles in determining the optical properties of X at high power, as well as limiting the ultimate exciton densities that can be achieved, yet so far little is known about these interactions. Here, we demonstrate long-lived dense populations of momentum-indirect intervalley ($X_K$) and spin-indirect intravalley (D) dark excitons by time-resolved photoluminescence measurements (Tr-PL). Our results uncover an efficient inter-state conversion between X to D excitons through the spin-flip process and the one between D and $X_K$ excitons mediated by the exchange interaction (D + D to $X_K$ + $X_K$). Moreover, we observe a persistent redshift of the X exciton due to strong excitonic screening by $X_K$ exciton with a response time in the timescale of sub-ns, revealing a non-trivial inter-state exciton-exciton interaction. Our results provide a new insight into the interaction between bright and dark excitons, and point to a possibility to employ dark excitons for investigating exciton condensation and the valleytronics.

Related articles: Most relevant | Search more
arXiv:1812.09082 [cond-mat.mes-hall] (Published 2018-12-21)
Spontanous breaking of time-reversal symmetry at the edges of 1T' monolayer transition metal dichalcogenides
arXiv:1409.2555 [cond-mat.mes-hall] (Published 2014-09-09)
All-optical injection of charge, spin and valley currents in monolayer transition metal dichalcogenides
arXiv:1606.06753 [cond-mat.mes-hall] (Published 2016-06-21)
Spin- and valley-polarized transport across line defects in monolayer MoS2