arXiv Analytics

Sign in

arXiv:2009.02414 [math.PR]AbstractReferencesReviewsResources

On the restrictiveness of the hazard rate order

S. Fried

Published 2020-09-04Version 1

Every element $\theta=(\theta_1,\ldots,\theta_n)$ of the probability $n$-simplex induces a probability distribution $P_\theta$ of a random variable $X$ that can assume only a finite number of real values $x_1 < \cdots < x_n$ by defining $P_\theta(X=x_i) = \theta_i, 1\leq i \leq n$. We show that if $\Theta$ and $\Theta'$ are two random vectors uniformly distributed on $\Delta^n$, then $P(P_\Theta\leq_{\rm hr} P_{\Theta'})=\frac{1}{2^{n-1}}$ where $\leq_{\rm hr}$ denotes the hazard rate order.

Related articles: Most relevant | Search more
arXiv:2203.01712 [math.PR] (Published 2022-03-03)
Gaussian approximations for random vectors
arXiv:2301.04886 [math.PR] (Published 2023-01-12)
Random vectors on the spin configuration of a Curie-Weiss model on Erdős-Rényi random graphs
arXiv:2102.13513 [math.PR] (Published 2021-02-26)
Sharp Asymptotics for $q$-Norms of Random Vectors in High-Dimensional $\ell_p^n$-Balls