arXiv:2009.01602 [math.AP]AbstractReferencesReviewsResources
On nonlinear Schrödinger equations on the hyperbolic space
Matija Cencelj, István Faragó, Róbert Horváth, Dušan D. Repovš
Published 2020-09-03Version 1
We study existence of weak solutions for certain classes of nonlinear Schr\"{o}dinger equations on the Poincar\'{e} ball model $\mathbb{B}^N$, $N\geq 3$. By using the Palais principle of symmetric criticality and suitable group theoretical arguments, we establish the existence of a nontrivial (weak) solution.
Journal: J. Math. Anal. Appl. 492:2 (2020), art. 124516, 12 pp
Categories: math.AP
Keywords: nonlinear schrödinger equations, hyperbolic space, study existence, weak solutions, suitable group theoretical arguments
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1103.4779 [math.AP] (Published 2011-03-24)
Poincaré Sobolev equations in the Hyperbolic space
arXiv:1002.2154 [math.AP] (Published 2010-02-10)
Phase transitions and minimal hypersurfaces in hyperbolic space]
arXiv:1010.4008 [math.AP] (Published 2010-10-19)
Hypersurfaces of constant curvature in Hyperbolic space