arXiv Analytics

Sign in

arXiv:2009.01602 [math.AP]AbstractReferencesReviewsResources

On nonlinear Schrödinger equations on the hyperbolic space

Matija Cencelj, István Faragó, Róbert Horváth, Dušan D. Repovš

Published 2020-09-03Version 1

We study existence of weak solutions for certain classes of nonlinear Schr\"{o}dinger equations on the Poincar\'{e} ball model $\mathbb{B}^N$, $N\geq 3$. By using the Palais principle of symmetric criticality and suitable group theoretical arguments, we establish the existence of a nontrivial (weak) solution.

Journal: J. Math. Anal. Appl. 492:2 (2020), art. 124516, 12 pp
Categories: math.AP
Subjects: 35J60, 49K10, 58J32, 35A01, 35R01
Related articles: Most relevant | Search more
arXiv:1103.4779 [math.AP] (Published 2011-03-24)
Poincaré Sobolev equations in the Hyperbolic space
arXiv:1002.2154 [math.AP] (Published 2010-02-10)
Phase transitions and minimal hypersurfaces in hyperbolic space]
arXiv:1010.4008 [math.AP] (Published 2010-10-19)
Hypersurfaces of constant curvature in Hyperbolic space