arXiv Analytics

Sign in

arXiv:2009.01080 [astro-ph.SR]AbstractReferencesReviewsResources

Mass loss along the red giant branch in 46 Globular Clusters and their multiple populations

M. Tailo, A. P. Milone, E. P. Lagioia, F. D'Antona, A. F. Marino, E. Vesperini, V. Caloi, P. Ventura, E. Dondoglio, G. Cordoni

Published 2020-09-02Version 1

The location of Galactic Globular Clusters' (GC) stars on the horizontal branch (HB) should mainly depend on GC metallicity, the "first parameter", but it is actually the result of complex interactions between the red giant branch (RGB) mass loss, the coexistence of multiple stellar populations with different helium content, and the presence of a "second parameter" which produces dramatic differences in HB morphology of GCs of similar metallicity and ages (like the pair M3--M13). In this work, we combine the entire dataset from the Hubble Space Telescope Treasury survey and stellar evolutionary models, to analyse the HBs of 46 GCs. For the first time in a large sample of GCs, we generate population synthesis models, where the helium abundances for the first and the "extreme" second generations are constrained using independent measurements based on RGB stars. The main results are: 1) the mass loss of first generation stars is tightly correlated to cluster metallicity. 2) the location of helium enriched stars on the HB is reproduced only by adopting a higher RGB mass loss than for the first generation. The difference in mass loss correlates with helium enhancement and cluster mass. 3) A model of "pre-main sequence disc early loss", previously developed by the authors, explains such a mass loss increase and is consistent with the findings of multiple-population formation models predicting that populations more enhanced in helium tend to form with higher stellar densities and concentrations. 4) Helium-enhancement and mass-loss both contribute to the second parameter.

Comments: 29 pages, 30 figures, 4 tables. Accepted for publication in MNRAS
Categories: astro-ph.SR, astro-ph.GA
Related articles: Most relevant | Search more
arXiv:1501.00874 [astro-ph.SR] (Published 2015-01-05)
Mass loss on the red giant branch: the value and metallicity dependence of Reimers' η in globular clusters
arXiv:1106.6082 [astro-ph.SR] (Published 2011-06-29)
Formation of Multiple Populations in Globular Clusters: Another Possible Scenario
arXiv:1910.00613 [astro-ph.SR] (Published 2019-10-01)
A family picture: tracing the dynamical path of the structural properties of multiple populations in globular clusters