arXiv:2008.03253 [math.FA]AbstractReferencesReviewsResources
Quasinilpotent operators on separable Hilbert spaces have nontrivial invariant subspaces
Published 2020-07-26Version 1
The invariant subspace problem is a well known unsolved problem in funtional analysis. While many partial results are known, the general case for complex, infinite dimensional separable Hilbert spaces is still open. It has been shown that the problem can be reduced to the case of operators which are norm limits of nilpotents. One of the most important subcases is the one of quasinilpotent operators, for which the problem has been extensively studied for many years. In this paper, we will prove that every quasinilpotent operator has a nontrivial invariant subspace. This will imply that all the operators for which the ISP has not been established yet are norm-limits of operators having nontrivial invariant subspaces.