arXiv:2008.01601 [math.CA]AbstractReferencesReviewsResources
Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters
Published 2020-08-04Version 1
We derive asymptotic expansions of the Kummer functions $M(a,b,z)$ and $U(a,b+1,z)$ for large positive values of $a$ and $b$, with $z$ fixed. For both functions we consider $b/a\le 1$ and $b/a\ge 1$, with special attention for the case $a\sim b$. We use a uniform method to handle all cases of these parameters.
Comments: 14 pages, 2 figures
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:2202.12857 [math.CA] (Published 2022-02-25)
Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters $a$, $b$ and $z$
A conjecture on monotonicity of a ratio of Kummer hypergeometric functions
Remarks on Slater's asymptotic expansions of Kummer functions for large values of the $a-$parameter