arXiv Analytics

Sign in

arXiv:2008.01601 [math.CA]AbstractReferencesReviewsResources

Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters

Nico M. Temme, Raffaello Seri

Published 2020-08-04Version 1

We derive asymptotic expansions of the Kummer functions $M(a,b,z)$ and $U(a,b+1,z)$ for large positive values of $a$ and $b$, with $z$ fixed. For both functions we consider $b/a\le 1$ and $b/a\ge 1$, with special attention for the case $a\sim b$. We use a uniform method to handle all cases of these parameters.

Comments: 14 pages, 2 figures
Categories: math.CA
Subjects: 33C15, 41A60
Related articles: Most relevant | Search more
arXiv:2202.12857 [math.CA] (Published 2022-02-25)
Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters $a$, $b$ and $z$
arXiv:1207.0936 [math.CA] (Published 2012-07-04, updated 2014-10-29)
A conjecture on monotonicity of a ratio of Kummer hypergeometric functions
arXiv:1306.5328 [math.CA] (Published 2013-06-22, updated 2022-08-04)
Remarks on Slater's asymptotic expansions of Kummer functions for large values of the $a-$parameter