arXiv Analytics

Sign in

arXiv:2007.14069 [math.OC]AbstractReferencesReviewsResources

Convergence of the Kiefer-Wolfowitz algorithm in the presence of discontinuities

Miklos Rasonyi, Kinga Tikosi

Published 2020-07-28Version 1

In this paper we estimate the expected error of a stochastic approximation algorithm where the maximum of a function is found using finite differences of a stochastic representation of that function. An error estimate of $O(n^{-1/5})$ for the $n$th iteration is achieved using suitable parameters. The novelty with respect to previous studies is that we allow the stochastic representation to be discontinuous and to consist of possibly dependent random variables (satisfying a mixing condition).

Related articles: Most relevant | Search more
arXiv:1310.7063 [math.OC] (Published 2013-10-26, updated 2015-07-01)
On the Convergence of Decentralized Gradient Descent
arXiv:0803.2211 [math.OC] (Published 2008-03-14, updated 2010-05-09)
On Conditions for Convergence to Consensus
arXiv:1801.08691 [math.OC] (Published 2018-01-26)
On Quasi-Newton Forward--Backward Splitting: Proximal Calculus and Convergence