arXiv:2007.09204 [math.CO]AbstractReferencesReviewsResources
Edge-critical subgraphs of Schrijver graphs II: The general case
Published 2020-07-17Version 1
We give a simple combinatorial description of an $(n-2k+2)$-chromatic edge-critical subgraph of the Schrijver graph $\mathrm{SG}(n,k)$, itself an induced vertex-critical subgraph of the Kneser graph $\mathrm{KG}(n,k)$. This extends the main result of [J. Combin. Theory Ser. B 144 (2020) 191--196] to all values of $k$, and sharpens the classical results of Lov\'asz and Schrijver from the 1970s.
Related articles: Most relevant | Search more
arXiv:1503.06912 [math.CO] (Published 2015-03-24)
Hadwiger's conjecture for the complements of Kneser graphs
arXiv:2003.09409 [math.CO] (Published 2020-03-20)
Achromatic numbers of Kneser graphs
arXiv:1807.11732 [math.CO] (Published 2018-07-31)
Neighborhood Complexes of Kneser Graphs, $KG_{3,k}$