arXiv Analytics

Sign in

arXiv:2007.07655 [math.AP]AbstractReferencesReviewsResources

A Triviality Result for Semilinear Parabolic Equations

Giovanni Catino, Daniele Castorina, Carlo Mantegazza

Published 2020-07-15Version 1

We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation \begin{equation*} u_{t}=\Delta u + |u|^{p} \end{equation*} on complete Riemannian manifolds of dimension $n \geq 5$ with nonnegative Ricci tensor, when $p$ is smaller than the critical Sobolev exponent $\frac{n+2}{n-2}$.

Related articles: Most relevant | Search more
arXiv:2206.11758 [math.AP] (Published 2022-06-23)
Blow-up for semilinear parabolic equations in cones of the hyperbolic space
arXiv:2505.10712 [math.AP] (Published 2025-05-15)
Extinction and propagation phenomena for semilinear parabolic equations on metric trees
arXiv:2406.15069 [math.AP] (Published 2024-06-21)
Blow-up and global existence for semilinear parabolic equations on infinite graphs