arXiv Analytics

Sign in

arXiv:2007.06364 [cs.CV]AbstractReferencesReviewsResources

On uncertainty estimation in active learning for image segmentation

Bo Li, Tommy Sonne Alstrøm

Published 2020-07-13Version 1

Uncertainty estimation is important for interpreting the trustworthiness of machine learning models in many applications. This is especially critical in the data-driven active learning setting where the goal is to achieve a certain accuracy with minimum labeling effort. In such settings, the model learns to select the most informative unlabeled samples for annotation based on its estimated uncertainty. The highly uncertain predictions are assumed to be more informative for improving model performance. In this paper, we explore uncertainty calibration within an active learning framework for medical image segmentation, an area where labels often are scarce. Various uncertainty estimation methods and acquisition strategies (regions and full images) are investigated. We observe that selecting regions to annotate instead of full images leads to more well-calibrated models. Additionally, we experimentally show that annotating regions can cut 50% of pixels that need to be labeled by humans compared to annotating full images.

Comments: Presented at ICML 2020 Workshop on Uncertainty & Robustness in Deep Learning
Categories: cs.CV, cs.LG
Related articles: Most relevant | Search more
arXiv:2101.02323 [cs.CV] (Published 2021-01-07)
Diminishing Uncertainty within the Training Pool: Active Learning for Medical Image Segmentation
arXiv:2301.07670 [cs.CV] (Published 2023-01-18)
Active learning for medical image segmentation with stochastic batches
arXiv:1504.08219 [cs.CV] (Published 2015-04-30)
Hierarchical Subquery Evaluation for Active Learning on a Graph