arXiv:2006.14696 [math.AG]AbstractReferencesReviewsResources
Complex surface singularities with rational homology disk smoothings
Published 2020-06-25Version 1
A cyclic quotient singularity of type $p^2/pq-1$ ($0<q<p, (p,q)=1$) has a smoothing whose Milnor fibre is a $\mathbb Q$HD, or rational homology disk (i.e., the Milnor number is $0$) ([9], 5.9.1). In the 1980's, we discovered additional examples of such singularities: three triply-infinite and six singly-infinite families, all weighted homogeneous. Later work of Stipsicz, Szab\'{o}, Bhupal, and the author ([7], [1]) proved that these were the only weighted homogeneous examples. In his UNC PhD thesis (unpublished but available at [2]), our student Jacob Fowler completed the analytic classification of these singularities, and counted the number of smoothings in each case, except for types $\mathcal W$, $\mathcal N$, and $\mathcal M$. In this paper, we describe his results, and settle these remaining cases; there is a unique $\mathbb Q$HD smoothing component except in the cases of an obvious symmetry of the resolution dual graph. The method involves study of configurations of rational curves on projective rational surfaces.