arXiv Analytics

Sign in

arXiv:2006.14639 [astro-ph.GA]AbstractReferencesReviewsResources

Galaxy Morphology Network: A Convolutional Neural Network Used to Study Morphology and Quenching in $\sim 100,000$ SDSS and $\sim 20,000$ CANDELS Galaxies

Aritra Ghosh, C. Megan Urry, Zhengdong Wang, Kevin Schawinski, Dennis Turp, Meredith C. Powell

Published 2020-06-25Version 1

We examine morphology-separated color-mass diagrams to study the quenching of star formation in $\sim 100,000$ ($z\sim0$) Sloan Digital Sky Survey (SDSS) and $\sim 20,000$ ($z\sim1$) Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) galaxies. To classify galaxies morphologically, we developed Galaxy Morphology Network (GaMorNet), a convolutional neural network that classifies galaxies according to their bulge-to-total light ratio. GaMorNet does not need a large training set of real data and can be applied to data sets with a range of signal-to-noise ratios and spatial resolutions. GaMorNet's source code as well as the trained models are made public as part of this work ( http://www.astro.yale.edu/aghosh/gamornet.html ). We first trained GaMorNet on simulations of galaxies with a bulge and a disk component and then transfer learned using $\sim25\%$ of each data set to achieve misclassification rates of $\lesssim5\%$. The misclassified sample of galaxies is dominated by small galaxies with low signal-to-noise ratios. Using the GaMorNet classifications, we find that bulge- and disk-dominated galaxies have distinct color-mass diagrams, in agreement with previous studies. For both SDSS and CANDELS galaxies, disk-dominated galaxies peak in the blue cloud, across a broad range of masses, consistent with the slow exhaustion of star-forming gas with no rapid quenching. A small population of red disks is found at high mass ($\sim14\%$ of disks at $z\sim0$ and $2\%$ of disks at $z \sim 1$). In contrast, bulge-dominated galaxies are mostly red, with much smaller numbers down toward the blue cloud, suggesting rapid quenching and fast evolution across the green valley. This inferred difference in quenching mechanism is in agreement with previous studies that used other morphology classification techniques on much smaller samples at $z\sim0$ and $z\sim1$.

Comments: 23 pages, 12 figures; Accepted for publication in The Astrophysical Journal; Public Data Release at http://www.astro.yale.edu/aghosh/gamornet.html
Journal: The Astrophysical Journal, 895(2), 112 (2020)
Categories: astro-ph.GA, astro-ph.IM
Related articles: Most relevant | Search more
arXiv:2004.12666 [astro-ph.GA] (Published 2020-04-27)
The RAdial Velocity Experiment: Parameterization of RAVE spectra based on Convolutional Neural Network
G. Guiglion et al.
arXiv:2201.05571 [astro-ph.GA] (Published 2022-01-14)
3D extinction mapping of the Milky Way using Convolutional Neural Networks: Presentation of the method and demonstration in the Carina Arm region
arXiv:2010.11126 [astro-ph.GA] (Published 2020-10-21)
Study of star clusters in the M83 galaxy with a convolutional neural network