arXiv:2006.08541 [math.RT]AbstractReferencesReviewsResources
Majorization and Spherical Functions
Colin McSwiggen, Jonathan Novak
Published 2020-06-15Version 1
Majorization is a partial order on real vectors which plays an important role in a variety of subjects, ranging from algebra and combinatorics to probability and statistics. In this paper, we consider a generalized notion of majorization associated to an arbitrary root system $\Phi,$ and show that it admits a natural characterization in terms of the values of spherical functions on any Riemannian symmetric space with restricted root system $\Phi.$
Comments: 17 pages, no figures
Related articles: Most relevant | Search more
arXiv:1807.03904 [math.RT] (Published 2018-07-10)
Mehler-Heine formula: a generalization in the context of spherical functions
arXiv:1306.6581 [math.RT] (Published 2013-06-27)
Funciones Esféricas Matriciales Asociadas a las Esferas y a los Espacios Proyectivos Reales
arXiv:1910.01048 [math.RT] (Published 2019-10-02)
An estimate for spherical functions on $\mathrm{SL}(3,\mathbb{R})$