arXiv Analytics

Sign in

arXiv:2006.06626 [math.OC]AbstractReferencesReviewsResources

Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward

Guannan Qu, Yiheng Lin, Adam Wierman, Na Li

Published 2020-06-11Version 1

It has long been recognized that multi-agent reinforcement learning (MARL) faces significant scalability issues due to the fact that the size of the state and action spaces are exponentially large in the number of agents. In this paper, we identify a rich class of networked MARL problems where the model exhibits a local dependence structure that allows it to be solved in a scalable manner. Specifically, we propose a Scalable Actor-Critic (SAC) method that can learn a near optimal localized policy for optimizing the average reward with complexity scaling with the state-action space size of local neighborhoods, as opposed to the entire network. Our result centers around identifying and exploiting an exponential decay property that ensures the effect of agents on each other decays exponentially fast in their graph distance.

Related articles: Most relevant | Search more
arXiv:2204.05551 [math.OC] (Published 2022-04-12)
Near-Optimal Distributed Linear-Quadratic Regulator for Networked Systems
arXiv:2009.04289 [math.OC] (Published 2020-09-09)
A scalable controller synthesis method for the robust control of networked systems
arXiv:1203.6785 [math.OC] (Published 2012-03-30, updated 2012-08-29)
Ensuring Stability in Networked Systems with Nonlinear MPC for Continuous Time Systems