arXiv:2005.13351 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Inducing anisotropies in Dirac fermions by periodic driving
Published 2020-05-27Version 1
We consider the three-dimensional Hamiltonian for Bi$_2$Se$_3$, a second-generation topological insulator, under the effect of a periodic drive for both in-plane and out-of-plane fields. As it will be shown by means of high-frequency expansions up to second order in the Floquet Hamiltonian, the driving induces anisotropies in the Dirac cone and opens up a quasienergy gap for in-plane elliptically polarized fields. Analytic expressions are obtained for the renormalized velocities and the quasienergy gap. These expressions are then compared to numerical calculations performed by discretizing the Hamiltonian in a one-dimensional lattice and following a staggered fermion approach, achieving a remarkable agreement. We believe our work may have an impact on the transport properties of topological insulators.