arXiv Analytics

Sign in

arXiv:2005.12863 [math.GT]AbstractReferencesReviewsResources

Instantons and Khovanov skein homology on $I\times T^2$

Yi Xie, Boyu Zhang

Published 2020-05-26Version 1

Asaeda, Przytycki and Sikora defined a generalization of Khovanov homology for links in $I$-bundles over compact surfaces. We prove that for a link $L\subset (-1,1)\times T^2$, the Asaeda-Przytycki-Sikora homology of $L$ has rank $2$ with $\mathbb{Z}/2$-coefficients if and only if $L$ is isotopic to an embedded knot in $\{0\}\times T^2$.

Related articles: Most relevant | Search more
arXiv:0907.4375 [math.GT] (Published 2009-07-27, updated 2013-03-22)
Khovanov homology, sutured Floer homology, and annular links
arXiv:math/0301312 [math.GT] (Published 2003-01-27)
Khovanov Homology and Conway Mutation
arXiv:1509.07174 [math.GT] (Published 2015-09-23)
On bordered theories for Khovanov homology