arXiv Analytics

Sign in

arXiv:2005.03548 [math.CA]AbstractReferencesReviewsResources

Off-diagonal estimates for bi-commutators

Emil Airta, Tuomas Hytönen, Kangwei Li, Henri Martikainen, Tuomas Oikari

Published 2020-05-07Version 1

We study the bi-commutators $[T_1, [b, T_2]]$ of pointwise multiplication and Calder\'on-Zygmund operators, and characterize their $L^{p_1}L^{p_2} \to L^{q_1}L^{q_2}$ boundedness for several off-diagonal regimes of the mixed-norm integrability exponents $(p_1,p_2)\neq(q_1,q_2)$. The strategy is based on a bi-parameter version of the recent approximate weak factorization method.

Related articles: Most relevant | Search more
arXiv:math/0603641 [math.CA] (Published 2006-03-28)
Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part II: Off-diagonal estimates on spaces of homogeneous type
arXiv:2010.01538 [math.CA] (Published 2020-10-04)
Off-diagonal estimates for commutators of bi-parameter singular integrals
arXiv:math/0603642 [math.CA] (Published 2006-03-28)
Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators