arXiv Analytics

Sign in

arXiv:2005.01780 [quant-ph]AbstractReferencesReviewsResources

Correlations for computation and computation for correlations

Bülent Demirel, Weikai Weng, Christopher Thalacker, Matty Hoban, Stefanie Barz

Published 2020-05-04Version 1

Quantum correlations are central to the foundations of quantum physics and form the basis of quantum technologies. Here, our goal is to connect quantum correlations and computation: using quantum correlations as a resource for computation - and vice versa, using computation to test quantum correlations. We derive Bell-type inequalities that test the capacity of quantum states for computing Boolean functions and experimentally investigate them using 4-photon Greenberger-Horne-Zeilinger (GHZ) states. Further, we show how the generated states can be used to specifically compute Boolean functions - which can be used to test and verify the non-classicality of the underlying quantum states. The connection between quantum correlation and computability shown here has applications in quantum technologies, and is important for networked computing being performed by measurements on distributed multipartite quantum states.

Related articles: Most relevant | Search more
arXiv:quant-ph/0504063 (Published 2005-04-08)
Geometric Effects and Computation in Spin Networks
arXiv:quant-ph/0503068 (Published 2005-03-07)
The Future of Computation
arXiv:quant-ph/0701194 (Published 2007-01-26)
Computation at a distance