arXiv Analytics

Sign in

arXiv:2004.14110 [math.OC]AbstractReferencesReviewsResources

Search strategy in a complex and dynamic environment: the MH370 case

Stefan Ivić, Bojan Crnković, Hassan Arbabi, Sophie Loire, Patrick Clary, Igor Mezić

Published 2020-04-29Version 1

Search and detection of objects on the ocean surface is a challenging task due to the complexity of the drift dynamics and lack of known optimal solutions for the path of the search agents. This challenge was highlighted by the unsuccessful search for Malaysian Flight 370 (MH370) which disappeared on March 8, 2014. In this paper, we propose an improvement of a search algorithm rooted in the ergodic theory of dynamical systems which can accommodate complex geometries and uncertainties of the drifting search areas on the ocean surface. We illustrate the effectiveness of this algorithm in a computational replication of the conducted search for MH370. In comparison to conventional search methods, the proposed algorithm leads to an order of magnitude improvement in success rate over the time period of the actual search operation. Simulations of the proposed search control also indicate that the initial success rate of finding debris increases in the event of delayed search commencement. This is due to the existence of convergence zones in the search area which leads to local aggregation of debris in those zones and hence reduction of the effective size of the area to be searched.

Related articles:
arXiv:2404.00608 [math.OC] (Published 2024-03-31)
Sample Complexity of Chance Constrained Optimization in Dynamic Environment
arXiv:1003.1464 [math.OC] (Published 2010-03-07)
Firefly Algorithm, Levy Flights and Global Optimization
arXiv:2203.17033 [math.OC] (Published 2022-03-31)
An optimization model with stochastic variables for flexible production logistics planning