arXiv Analytics

Sign in

arXiv:2004.08841 [math.DG]AbstractReferencesReviewsResources

Cohomologies of complex manifolds with symplectic $(1,1)$-forms

Adriano Tomassini, Xu Wang

Published 2020-04-19Version 1

Let $(X, J)$ be a complex manifold with a non-degenerated smooth $d$-closed $(1,1)$-form $\omega$. Then we have a natural double complex $\overline{\partial}+\overline{\partial}^\Lambda$, where $\overline{\partial}^\Lambda$ denotes the symplectic adjoint of the $\overline{\partial}$-operator. We study the Hard Lefschetz Condition on the Dolbeault cohomology groups of $X$ with respect to the symplectic form $\omega$. In \cite{TW}, we proved that such a condition is equivalent to a certain symplectic analogous of the $\partial\overline{\partial}$-Lemma, namely the $\overline{\partial}\, \overline{\partial}^\Lambda$-Lemma, which can be characterized in terms of Bott--Chern and Aeppli cohomologies associated to the above double complex. We obtain Nomizu type theorems for the Bott--Chern and Aeppli cohomologies and we show that the $\overline{\partial}\, \overline{\partial}^\Lambda$-Lemma is stable under small deformations of $\omega$, but not stable under small deformations of the complex structure. However, if we further assume that $X$ satisfies the $\partial\overline{\partial}$-Lemma then the $\overline{\partial}\, \overline{\partial}^\Lambda$-Lemma is stable.

Related articles: Most relevant | Search more
arXiv:1502.07581 [math.DG] (Published 2015-02-26)
On small deformations of balanced manifolds
arXiv:2008.06970 [math.DG] (Published 2020-08-16)
Lifts on complex manifolds
arXiv:math/0402028 [math.DG] (Published 2004-02-03, updated 2004-07-22)
Chern connections and Chern curvature of the tangent bundle of almost complex manifolds