arXiv Analytics

Sign in

arXiv:2004.06932 [math.PR]AbstractReferencesReviewsResources

Space-time Euler discretization schemes for the stochastic 2D Navier-Stokes equations

Hakima Bessaih, Annie Millet

Published 2020-04-15Version 1

We prove that the implicit time Euler scheme coupled with finite elements space discretization for the 2D Navier-Stokes equations on the torus subject to a random perturbation converges in $L^2(\Omega)$, and describe the rate of convergence for an $H^1$-valued initial condition. This refines previous results which only established the convergence in probability of these numerical approximations. Using exponential moment estimates of the solution of the stochastic Navier-Stokes equations and convergence of a localized scheme, we can prove strong convergence of this space-time approximation. The speed of the $L^2(\Omega)$-convergence depends on the diffusion coefficient and on the viscosity parameter. In case of Scott-Vogelius mixed elements and for an additive noise, the convergence is polynomial.

Related articles: Most relevant | Search more
arXiv:1101.1810 [math.PR] (Published 2011-01-10, updated 2013-11-06)
Convergence in law of the minimum of a branching random walk
arXiv:math/0310210 [math.PR] (Published 2003-10-15, updated 2006-02-09)
The harmonic explorer and its convergence to SLE(4)
arXiv:1107.2543 [math.PR] (Published 2011-07-13, updated 2015-08-31)
Convergence in law for the branching random walk seen from its tip