arXiv:2004.05579 [math.NA]AbstractReferencesReviewsResources
Reconstruction of piecewise-smooth multivariate functions from Fourier data
Published 2020-04-12Version 1
In some applications, one is interested in reconstructing a function $f$ from its Fourier series coefficients. The problem is that the Fourier series is slowly convergent if the function is non-periodic, or is non-smooth. In this paper, we suggest a method for deriving high order approximation to $f$ using a Pad\'e-like method. Namely, by fitting some Fourier coefficients of the approximant to the given Fourier coefficients of $f$. Given the Fourier series coefficients of a function on a rectangular domain in $\mathbb{R}^d$, assuming the function is piecewise smooth, we approximate the function by piecewise high order spline functions. First, the singularity structure of the function is identified. For example in the 2-D case, we find high accuracy approximation to the curves separating between smooth segments of $f$. Secondly, simultaneously we find the approximations of all the different segments of $f$. We start by developing and demonstrating a high accuracy algorithm for the 1-D case, and we use this algorithm to step up to the multidimensional case.