arXiv Analytics

Sign in

arXiv:2003.13697 [astro-ph.SR]AbstractReferencesReviewsResources

Angular Momenta, Magnetization, and Accretion of Protostellar Cores

Aleksandra Kuznetsova, Lee Hartmann, Fabian Heitsch

Published 2020-03-30Version 1

Building on our previous hydrodynamic study of the angular momenta of cloud cores formed during gravitational collapse of star-forming molecular gas in our previous work, we now examine core properties assuming ideal magnetohydrodynamics (MHD). Using the same sink-patch implementation for the \emph{Athena} MHD code, we characterize the statistical properties of cores, including the mass accretion rates, specific angular momenta, and alignments between the magnetic field and the spin axis of the core on the $0.1 \ \mathrm{pc}$ scale. Our simulations, which reproduce the observed relation between magnetic field strength and gas density, show that magnetic fields can help collimate low density flows and help seed the locations of filamentary structures. Consistent with our previous purely hydrodynamic simulations, stars (sinks) form within the heterogeneous environments of filaments, such that accretion onto cores is highly episodic leading to short-term variability but no long-term monotonic growth of the specific angular momenta. With statistical characterization of protostellar cores properties and behaviors, we aim to provide a starting point for building more realistic and self-consistent disk formation models, helping to address whether magnetic fields can prevent the development of (large) circumstellar disks in the ideal MHD limit.

Related articles: Most relevant | Search more
arXiv:1008.0409 [astro-ph.SR] (Published 2010-08-02)
Lowering the Characteristic Mass of Cluster Stars by Magnetic Fields and Outflow Feedback
arXiv:1008.3790 [astro-ph.SR] (Published 2010-08-23, updated 2010-12-09)
Protostellar collapse and fragmentation using an MHD GADGET
arXiv:1102.4661 [astro-ph.SR] (Published 2011-02-23)
Chemical spots in the absence of magnetic field in the binary HgMn star 66 Eridani