arXiv:2003.10204 [math.DG]AbstractReferencesReviewsResources
Scattering Theory and Spectral Stability under a Ricci Flow for Dirac Operators
Published 2020-03-23Version 1
Given a noncompact spin manifold $M$ with a fixed topological spin structure and two complete Riemannian metrics $g$ and $h$ on $M$ with bounded sectional curvatures, we prove a criterion for the existence and completeness of the wave operators $\mathscr{W}_{\pm}(D_h, D_g, I_{g,h})$ and $\mathscr{W}_{\pm}(D_h^2, D^2_g, I_{g,h})$, where $I_{g,h}$ is the canonically given unitary map between the underlying $L^2$-spaces of spinors. This criterion does not involve any injectivity radius assumptions and leads to a criterion for the stability of the absolutely continuous spectrum of a Dirac operator and its square under a Ricci flow.
Related articles: Most relevant | Search more
Submanifold Differential Operators in $\Cal D$-Module Theory II: Generalized Weierstrass and Frenet-Serret Relations as Dirac Equations
Analytic Surgery of the zeta-determinant of the Dirac operator
arXiv:math/0603676 [math.DG] (Published 2006-03-29)
Some extensions of the Einstein-Dirac equation