arXiv Analytics

Sign in

arXiv:2003.07180 [math.OC]AbstractReferencesReviewsResources

Iterative Pre-Conditioning to Expedite the Gradient-Descent Method

Kushal Chakrabarti, Nirupam Gupta, Nikhil Chopra

Published 2020-03-13Version 1

Gradient-descent method is one of the most widely used and perhaps the most natural method for solving an unconstrained minimization problem. The method is quite simple and can be implemented easily in distributed settings, which is the focus of this paper. We consider a distributed system of multiple agents where each agent has a local cost function, and the goal for the agents is to minimize the sum of their local cost functions. In principle, the distributed minimization problem can be solved by the agents using the traditional gradient-descent method. However, the convergence rate (or speed) of the gradient-descent method is bounded by the condition number of the minimization problem. Consequentially, when the minimization problem to be solved is ill-conditioned, the gradient-descent method may require a large number of iterations to converge to the solution. Indeed, in many practical situations, the minimization problem that needs to be solved is ill-conditioned. In this paper, we propose an iterative pre-conditioning method that significantly reduces the impact of the conditioning of the minimization problem on the convergence rate of the traditional gradient-descent algorithm. The proposed pre-conditioning method can be implemented with ease in the considered distributed setting. For now, we only consider a special case of the distributed minimization problem where the local cost functions of the agents are linear squared-errors. Besides the theoretical guarantees, the improved convergence due to our pre-conditioning method is also demonstrated through experiments on a real data-set.

Comments: Accepted for the proceedings of the 2020 American Control Conference
Categories: math.OC, cs.LG, cs.SY, eess.SY, stat.ML
Related articles: Most relevant | Search more
arXiv:0904.4229 [math.OC] (Published 2009-04-27)
Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Minima
arXiv:1204.0301 [math.OC] (Published 2012-04-02)
Tree Codes Improve Convergence Rate of Consensus Over Erasure Channels
arXiv:1503.05601 [math.OC] (Published 2015-03-18)
A New Perspective of Proximal Gradient Algorithms