arXiv Analytics

Sign in

arXiv:2003.05195 [math.AP]AbstractReferencesReviewsResources

Regularizing properties of (non-Gaussian) transition semigroups in Hilbert spaces

D. A. Bignamini, S. Ferrari

Published 2020-03-11Version 1

Let $\mathcal{X}$ be a separable Hilbert space with norm $\|\cdot\|$ and let $T>0$. Let $Q$ be a linear, self-adjoint, positive, trace class operator on $\mathcal{X}$, let $F:\mathcal{X}\rightarrow \mathcal{X}$ be a (smooth enough) function and let $W(t)$ be a $\mathcal{X}$-valued cylindrical Wiener process. For $\alpha\in [0,1/2]$ we consider the operator $A:=-(1/2)Q^{2\alpha-1}:Q^{1-2\alpha}(\mathcal{X})\subseteq \mathcal{X}\rightarrow \mathcal{X}$. We are interested in the mild solution $X(t,x)$ of the semilinear stochastic partial differential equation \begin{gather*} \left\{\begin{array}{ll} dX(t,x)=\big(AX(t,x)+F(X(t,x))\big)dt+ Q^{\alpha}dW(t), & t\in(0,T];\\ X(0,x)=x\in \mathcal{X}, \end{array}\right. \end{gather*} and in its associated transition semigroup \begin{align*} P(t)\varphi(x):=\mathbb{E}[\varphi(X(t,x))], \qquad \varphi\in B_b(\mathcal{X}),\ t\in[0,T],\ x\in \mathcal{X}; \end{align*} where $B_b(\mathcal{X})$ is the space of the bounded and Borel measurable functions. We will show that under suitable hypotheses on $Q$ and $F$, $P(t)$ enjoys regularizing properties, along a continuously embedded subspace of $\mathcal{X}$. More precisely there exists $K:=K(F,T)>0$ such that for every $\varphi\in B_b(\mathcal{X})$, $x\in \mathcal{X}$, $t\in(0,T]$ and $h\in Q^\alpha(\mathcal{X})$ it holds \[|P(t)\varphi(x+h)-P(t)\varphi(x)|\leq Kt^{-1/2}\|Q^{-\alpha}h\|.\]

Related articles: Most relevant | Search more
arXiv:1109.6487 [math.AP] (Published 2011-09-29)
Optimal Regularity for Semilinear Stochastic Partial Differential Equations with Multiplicative Noise
arXiv:1805.00134 [math.AP] (Published 2018-04-30)
Fractional powers of monotone operators in Hilbert spaces
arXiv:0908.0356 [math.AP] (Published 2009-08-03)
On linear evolution equations with cylindrical Lévy noise