arXiv Analytics

Sign in

arXiv:2002.10822 [quant-ph]AbstractReferencesReviewsResources

Operational definition of quantum speed limit

Yanyan Shao, Bo Liu, Mao Zhang, Haidong Yuan, Jing Liu

Published 2020-02-25Version 1

Quantum speed limit is a fundamental concept in quantum mechanics, which aims at finding the minimum time scale or the maximum dynamical speed for some fixed targets. In a large number of studies in this field, the construction of valid bounds for the evolution time is always the core mission, yet the physics behind it and some fundamental questions like which states can really fulfill the target, are ignored. Understanding the physics behind the bounds is at least as important as constructing attainable bounds. Here we provide an operational approach for the definition of quantum speed limit, which utilizes the set of states that can fulfill the target to define the speed limit. Its performances in various scenarios have been investigated. For time-independent Hamiltonians, it is inverse-proportional to the difference between the highest and lowest energies. The fact that its attainability does not require a zero ground-state energy suggests it can be used as an indicator of quantum phase transitions. For time-dependent Hamiltonians, it is shown that contrary to the results given by existing bounds, the true speed limit should be independent of the time. Moreover, in the case of spontaneous emission, we find a counterintuitive phenomenon that a lousy purity can benefit the reduction of the quantum speed limit.

Related articles: Most relevant | Search more
arXiv:0907.3766 [quant-ph] (Published 2009-07-22, updated 2010-02-02)
Semiclassical Approach to Survival Probability at Quantum Phase Transitions
arXiv:quant-ph/0512249 (Published 2005-12-29, updated 2006-07-17)
Ground state overlap and quantum phase transitions
arXiv:1205.1300 [quant-ph] (Published 2012-05-07, updated 2013-01-15)
Quantum Discord, Decoherence and Quantum Phase Transitions