arXiv Analytics

Sign in

arXiv:2002.06249 [astro-ph.SR]AbstractReferencesReviewsResources

Coronal Dimming as a Proxy for Stellar Coronal Mass Ejections

Meng Jin, Mark C. M. Cheung, Marc L. DeRosa, Nariaki V. Nitta, Carolus J. Schrijver, Kevin France, Adam Kowalski, James P. Mason, Rachel Osten

Published 2020-02-14Version 1

Solar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerful ares that have CMEs from those that do not. Therefore, dimming might be one of the best candidates to observe the stellar CMEs on distant Sun-like stars. In this study, we investigate the possibility of using coronal dimming as a proxy to diagnose stellar CMEs. By simulating a realistic solar CME event and corresponding coronal dimming using a global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we first demonstrate the capability of the model to reproduce solar observations. We then extend the model for simulating stellar CMEs by modifying the input magnetic flux density as well as the initial magnetic energy of the CME flux rope. Our result suggests that with improved instrument sensitivity, it is possible to detect the coronal dimming signals induced by the stellar CMEs.

Comments: 8 pages, 4 figures, to appear in the Proceedings of IAU Symposium No. 354 - Solar and Stellar Magnetic Fields: Origins and Manifestations
Related articles: Most relevant | Search more
arXiv:2212.09079 [astro-ph.SR] (Published 2022-12-18)
Stellar Coronal Mass Ejections
arXiv:2004.05379 [astro-ph.SR] (Published 2020-04-11)
Tuning the Exo-Space Weather Radio for Stellar Coronal Mass Ejections
arXiv:2411.06283 [astro-ph.SR] (Published 2024-11-09)
Magnetic interaction of stellar coronal mass ejections with close-in exoplanets: implication on planetary mass loss and Ly-$α$ transits