arXiv:2002.01448 [math.PR]AbstractReferencesReviewsResources
Cumulants and Martingales
Peter K. Friz, Jim Gatheral, Radoš Radoičić
Published 2020-02-04Version 1
A general and computable expression for cumulants of a random variables in a semimartingale context is given, with resulting expressions for characteristic and cumulant generating functions. We have been inspired by a formal forest series for expectations of solutions of the Black-Scholes equation [AGR20]. Our proof is of remarkable simplicity and the result is likely to transcend the financial context from which it originates. A variety of examples are presented.
Comments: 23 pages
Categories: math.PR
Related articles: Most relevant | Search more
arXiv:2107.11974 [math.PR] (Published 2021-07-26)
For which functions are $f(X_t)-\mathbb{E} f(X_t)$ and $g(X_t)/\,\mathbb{E} g(X_t)$ martingales?
arXiv:2105.08889 [math.PR] (Published 2021-05-19)
Convergence of martingales with jumps on manifolds and its applications to harmonic maps
SLE(κ,ρ) martingales and duality