arXiv Analytics

Sign in

arXiv:2001.00893 [cs.LG]AbstractReferencesReviewsResources

Aleatoric and Epistemic Uncertainty with Random Forests

Mohammad Hossein Shaker, Eyke Hüllermeier

Published 2020-01-03Version 1

Due to the steadily increasing relevance of machine learning for practical applications, many of which are coming with safety requirements, the notion of uncertainty has received increasing attention in machine learning research in the last couple of years. In particular, the idea of distinguishing between two important types of uncertainty, often refereed to as aleatoric and epistemic, has recently been studied in the setting of supervised learning. In this paper, we propose to quantify these uncertainties with random forests. More specifically, we show how two general approaches for measuring the learner's aleatoric and epistemic uncertainty in a prediction can be instantiated with decision trees and random forests as learning algorithms in a classification setting. In this regard, we also compare random forests with deep neural networks, which have been used for a similar purpose.

Related articles: Most relevant | Search more
arXiv:1611.05162 [cs.LG] (Published 2016-11-16)
Net-Trim: A Layer-wise Convex Pruning of Deep Neural Networks
arXiv:1710.10570 [cs.LG] (Published 2017-10-29)
Weight Initialization of Deep Neural Networks(DNNs) using Data Statistics
arXiv:1711.06104 [cs.LG] (Published 2017-11-16)
A unified view of gradient-based attribution methods for Deep Neural Networks