arXiv Analytics

Sign in

arXiv:2001.00104 [math-ph]AbstractReferencesReviewsResources

Gauge Symmetries and Renormalization

David Prinz

Published 2019-12-31Version 1

The preservation of gauge symmetries to the quantum level induces symmetries between renormalized Green's functions. These symmetries are known by the names of Ward-Takahashi and Slavnov-Taylor identities. On a perturbative level, these symmetries can be implemented as Hopf ideals in the Connes-Kreimer renormalization Hopf algebra. In this article, we generalize the existing literature to the most general case by first motivating these symmetries on a generic level and then proving that they indeed generate Hopf ideals, where we also include the more involved cases of super- and non-renormalizable local QFTs. Finally, we provide a criterion for their validity on the level of renormalized Feynman rules.

Related articles: Most relevant | Search more
arXiv:1505.02541 [math-ph] (Published 2015-05-11)
Gauge Symmetries and Noether Charges in Clebsch-Parameterized Magnetohydrodynamics
arXiv:1605.04322 [math-ph] (Published 2016-05-13)
Doubling bialgebras of graphs and feynman rules
arXiv:0807.3003 [math-ph] (Published 2008-07-18, updated 2008-11-25)
On the notion of gauge symmetries of generic Lagrangian field theory