arXiv Analytics

Sign in

arXiv:1912.06158 [astro-ph.SR]AbstractReferencesReviewsResources

The peculiar kinematics of the multiple populations in the globular cluster Messier 80 (NGC 6093)

Sebastian Kamann, Emanuele Dalessandro, Nate Bastian, Jarle Brinchmann, Mark den Brok, Stefan Dreizler, Benjamin Giesers, Fabian Göttgens, Tim-Oliver Husser, Davor Krajnović, Glenn van de Ven, Laura L. Watkins, Lutz Wisotzki

Published 2019-12-12Version 1

We combine MUSE spectroscopy and Hubble Space Telescope ultraviolet (UV) photometry to perform a study of the chemistry and dynamics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Previous studies have revealed three stellar populations that not only vary in their light-element abundances, but also in their radial distributions, with concentration decreasing with increasing nitrogen enrichment. This remarkable trend, which sets M80 apart from the other Galactic globular clusters, points towards a complex formation and evolutionary history. To better understand how M80 formed and evolved, revealing its internal kinematics is key. We find that the most N-enriched population rotates faster than the other two populations at a 2 sigma confidence level. While our data further suggest that the intermediate population shows the least amount of rotation, this trend is rather marginal (1 - 2 sigma). Using axisymmetric Jeans models, we show that these findings can be explained from the radial distributions of the populations if they possess different angular momenta. Our findings suggest that the populations formed with primordial kinematical differences.

Comments: Accepted for publication in MNRAS, 13 pages, 7 figures
Categories: astro-ph.SR, astro-ph.GA
Related articles: Most relevant | Search more
arXiv:2104.13988 [astro-ph.SR] (Published 2021-04-28)
On the maximum helium content of multiple populations in the globular cluster NGC6752
arXiv:1907.12440 [astro-ph.SR] (Published 2019-07-29)
The role of cluster age on the onset of multiple populations in stellar clusters
arXiv:1612.00400 [astro-ph.SR] (Published 2016-12-01)
The Search for Multiple Populations in Magellanic Cloud Clusters II: The Detection of Multiple Populations in Three Intermediate-Age SMC Clusters