arXiv Analytics

Sign in

arXiv:1911.09308 [math.GT]AbstractReferencesReviewsResources

Crossing change on Khovanov homology and a categorified Vassiliev skein relation

Noboru Ito, Jun Yoshida

Published 2019-11-21Version 1

Khovanov homology is a categorification of the Jones polynomial, so it may be seen as a kind of quantum invariant of knots and links. Although polynomial quantum invariants are deeply involved with Vassiliev (aka. finite type) invariants, the relation remains unclear in case of Khovanov homology. Aiming at it, in this paper, we discuss a categorified version of Vassiliev skein relation on Khovanov homology. More precisely, we will show that the "genus-one" operation gives rise to a crossing change on Khovanov complexes. Invariance under Reidemeister moves turns out, and it enables us to extend Khovanov homology to singular links. We then see that a long exact sequence of Khovanov homology groups categorifies Vassiliev skein relation for the Jones polynomials. In particular, the Jones polynomial is recovered even for singular links. We in addition discuss the FI relation on Khovanov homology.

Related articles: Most relevant | Search more
arXiv:1704.03982 [math.GT] (Published 2017-04-13)
The Jones Polynomial and Khovanov Homology of Weaving Knots $W(3,n)$
arXiv:1904.07794 [math.GT] (Published 2019-04-16)
A generalized skein relation for Khovanov homology and a categorification of the $θ$-invariant
arXiv:0902.3370 [math.GT] (Published 2009-02-19)
Grid diagrams and Khovanov homology