arXiv:1911.08526 [math.OC]AbstractReferencesReviewsResources
The nonsmooth landscape of blind deconvolution
Published 2019-11-19Version 1
The blind deconvolution problem aims to recover a rank-one matrix from a set of rank-one linear measurements. Recently, Charisopulos et al. introduced a nonconvex nonsmooth formulation that can be used, in combination with an initialization procedure, to provably solve this problem under standard statistical assumptions. In practice, however, initialization is unnecessary. As we demonstrate numerically, a randomly initialized subgradient method consistently solves the problem. In pursuit of a better understanding of this phenomenon, we study the random landscape of this formulation. We characterize in closed form the landscape of the population objective and describe the approximate location of the stationary points of the sample objective. In particular, we show that the set of spurious critical points lies close to a codimension two subspace. In doing this, we develop tools for studying the landscape of a broader family of singular value functions, these results may be of independent interest.