arXiv:1911.08369 [math.FA]AbstractReferencesReviewsResources
Embeddings and characterizations of Lipschitz spaces
Oscar Domínguez, Dorothee D. Haroske, Sergey Tikhonov
Published 2019-11-19Version 1
In this paper we give a thorough study of Lipschitz spaces. We obtain the following new results: (1) Sharp Jawerth-Franke-type embeddings between the Besov and Lipschitz spaces extending the classical results for Besov and Sobolev spaces; (2) Sharp embeddings between Lipschitz spaces with different parameters extending the Br\'ezis-Wainger result; (3) Characterizations for Lipschitz spaces norms via Fourier transforms and wavelets; (4) Sharp embeddings from Lipschitz spaces into Lebesgue/Lorentz-Zygmund spaces.
Comments: 72 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1904.05018 [math.FA] (Published 2019-04-10)
Characterizations of derivations
arXiv:1506.02101 [math.FA] (Published 2015-06-06)
On characterizations of $\mathcal{MT}(λ)$-functions
arXiv:1509.02326 [math.FA] (Published 2015-09-08)
Quasiopen and p-path open sets, and characterizations of quasicontinuity