arXiv Analytics

Sign in

arXiv:1910.11387 [astro-ph.HE]AbstractReferencesReviewsResources

Proton acceleration in pulsar magnetospheres

C. Guépin, B. Cerutti, K. Kotera

Published 2019-10-24Version 1

Pulsars have been identified as good candidates for the acceleration of cosmic rays, up to ultra-high energies. However, a precise description of the acceleration processes at play is still to be established. Using 2D particle-in-cell simulations, we study proton acceleration in axisymmetric pulsar magnetospheres. Protons and electrons are extracted from the neutron star surface by the strong electric field induced by the rotation of the star, and electrons and positrons are produced in the magnetosphere through pair production process. As pair production has a crucial impact on electromagnetic fields, on gaps and thus on particle acceleration, we study its influence on the maximum energy and luminosity of protons escaping the magnetosphere. Protons are accelerated and escape in all our simulations. However, the acceleration sites are different for the protons and the pairs. As shown in previous studies, pairs are accelerated to their highest energies at the Y-point and in the equatorial current sheet, where magnetic reconnection plays and important role. In contrast, protons gain most of their kinetic energy below the light-cylinder radius within the separatrix current layers, but they are not confined within the equatorial current sheet. They can reach $15\%$ to $75\%$ of the maximum Lorentz factor obtained by the acceleration through the full vacuum potential drop from pole to equator, respectively for a high and a low yield of pair production. Their luminosity can reach $0.5\%$ to $2\%$ of the theoretical spin down luminosity of an aligned pulsar, respectively for a low and a high yield of pair production. These estimates support that millisecond pulsars could accelerate cosmic rays up to PeV energies and that new born millisecond pulsars could accelerate cosmic rays up to ultra-high energies.

Comments: 12 pages, 12 figures, submitted to A&A
Categories: astro-ph.HE
Related articles: Most relevant | Search more
arXiv:1611.04331 [astro-ph.HE] (Published 2016-11-14)
Electrodynamics of pulsar magnetospheres
arXiv:1004.0725 [astro-ph.HE] (Published 2010-04-05)
Linear acceleration emission in pulsar magnetospheres
arXiv:2309.04834 [astro-ph.HE] (Published 2023-09-09)
Particle-in-cell simulations of pulsar magnetospheres: transition between electrosphere and force-free regimes