arXiv:1910.06802 [math.OC]AbstractReferencesReviewsResources
Superexponential stabilizability of evolution equations of parabolic type via bilinear control
Fatiha Alabau Boussouira, Piermarco Cannarsa, Cristina Urbani
Published 2019-10-14Version 1
We prove rapid stabilizability to the ground state solution for a class of abstract parabolic equations of the form \begin{equation*} u'(t)+Au(t)+p(t)Bu(t)=0,\qquad t\geq0 \end{equation*} where the operator $-A$ is a self-adjoint accretive operator on a Hilbert space and $p(\cdot)$ is the control function. The proof is based on a linearization argument. We prove that the linearized system is exacly controllable and we apply the moment method to build a control $p(\cdot)$ that steers the solution to the ground state in finite time. Finally, we use such a control to bring the solution of the nonlinear equation arbitrarily close to the ground state solution with doubly exponential rate of convergence. We give several applications of our result to different kinds of parabolic equations.