arXiv:1910.06166 [math.DG]AbstractReferencesReviewsResources
Proper $r$-harmonic functions from Riemannian manifolds
Sigmundur Gudmundsson, Marko Sobak
Published 2019-10-14Version 1
We introduce a new method for constructing complex-valued $r$-harmonic functions on Riemannian manifolds. We then apply this method for the important semisimple Lie groups $SO(n)$, $SU(n)$, $Sp(n)$, $SL_n(R)$, $Sp(R,n)$, $SU(p,q)$, $SO(p,q)$, $Sp(p,q)$, $SO^*(2n)$ and $SU^*(2n)$.
Categories: math.DG
Related articles: Most relevant | Search more
arXiv:0710.5752 [math.DG] (Published 2007-10-30)
Some classifications of \infty-Harmonic maps between Riemannian manifolds
arXiv:2003.10194 [math.DG] (Published 2020-03-23)
$p$-Harmonic and Complex Isoparametric Functions on the Lie Groups $\mathbb{R}^m \ltimes \mathbb{R}^n$ and $\mathbb{R}^m \ltimes \mathrm{H}^{2n+1}$
arXiv:1010.2889 [math.DG] (Published 2010-10-14)
Local Gradient Estimate for $p$-harmonic functions on Riemannian Manifolds