arXiv Analytics

Sign in

arXiv:1910.04200 [astro-ph.SR]AbstractReferencesReviewsResources

Bayesian inference of stellar parameters based on 1D stellar models coupled with 3D envelopes

Andreas Christ Sølvsten Jørgensen, George C. Angelou

Published 2019-10-09Version 1

Stellar models utilising one-dimensional (1D), heuristic theories of convection fail to adequately describe the energy transport in superadiabatic layers. The improper modelling leads to well-known discrepancies between observed and predicted oscillation frequencies for stars with convective envelopes. Recently, three-dimensional (3D) hydrodynamic simulations of stellar envelopes have been shown to facilitate a realistic depiction of superadiabatic convection in 1D stellar models. The resulting structural changes of the boundary layers have been demonstrated to impact not only the predicted oscillation spectra but evolution tracks as well. In this paper, we quantify the consequences that the change in boundary conditions has for stellar parameter estimates of main-sequence stars. For this purpose, we investigate two benchmark stars, Alpha Centauri A and B, using Bayesian inference. We show that the improved treatment of turbulent convection makes the obtained 1D stellar structures nearly insensitive to the mixing length parameter. By using 3D simulations in 1D stellar models, we hence overcome the degeneracy between the mixing length parameter and other stellar parameters. By lifting this degeneracy, the inclusion of 3D simulations has the potential to yield more robust parameter estimates. In this way, a more realistic depiction of superadiabatic convection has important implications for any field that relies on stellar models, including the study of the chemical evolution of the Milky Way Galaxy and exoplanet research.

Related articles: Most relevant | Search more
arXiv:1907.06039 [astro-ph.SR] (Published 2019-07-13)
Overcoming the structural surface effect with a realistic treatment of turbulent convection in 1D stellar models
arXiv:2307.10394 [astro-ph.SR] (Published 2023-07-19)
Refining the Stellar Parameters of $τ$ Ceti: a Pole-on Solar Analog
arXiv:1004.4505 [astro-ph.SR] (Published 2010-04-26)
A comparison of frequentist and Bayesian inference: Searching for low-frequency p modes and g modes in Sun-as-a-star data