arXiv Analytics

Sign in

arXiv:1909.09537 [math.LO]AbstractReferencesReviewsResources

A Note on the Decidability of $\mbox{Th}_{\exists}(\mathbb{F}_q (t))$

Brian Tyrrell

Published 2019-09-20Version 1

This note proves that in the language of rings $\mathcal{L}_{\mbox{rings}} = \{+, \cdot, 0, 1\}$ the existential theory of $\mathbb{F}_q (t)$ is decidable, for any finite field $\mathbb{F}_q$ of any characteristic. As a corollary we see $\mbox{Th}_{\exists}(\mathbb{F}_q (t))$ is decidable in the language $\mathcal{L}_{\mbox{rings}} \cup \{F\}$, where $F$ is a unary predicate expressing "$x \not \in \mathbb{F}_q$".

Comments: 5 pages. Comments welcome
Categories: math.LO, math.NT
Related articles: Most relevant | Search more
arXiv:1509.04535 [math.LO] (Published 2015-09-15)
A criterion for p-henselianity in characteristic p
arXiv:1012.2381 [math.LO] (Published 2010-12-10, updated 2012-03-04)
Decidability of definability
arXiv:1709.05157 [math.LO] (Published 2017-09-15)
On the Decidability of the Ordered Structures of Numbers