arXiv:1909.04643 [math.AT]AbstractReferencesReviewsResources
The Homotopy Types of $SU(4)$-Gauge Groups
Tyrone Cutler, Stephen Theriault
Published 2019-09-10Version 1
Let $\mathcal{G}_k$ be the gauge group of the principal $SU(4)$-bundle over $S^4$ with second Chern class $k$ and let $p$ be a prime. We show that there is a rational or $p$-local homotopy equivalence $\Omega\mathcal{G}_k\simeq\Omega\mathcal{G}_{k'}$ if and only if $(60,k)=(60,k')$.
Comments: 17 pages
Categories: math.AT
Related articles: Most relevant | Search more
arXiv:2204.08867 [math.AT] (Published 2022-04-19)
The homotopy types of $Sp(n)$-gauge groups over $S^{4m}$
arXiv:1807.01931 [math.AT] (Published 2018-07-05)
Homotopy types of $SU(n)$-gauge groups over non-spin 4-manifolds
arXiv:2107.06000 [math.AT] (Published 2021-07-13)
Homotopy types of $\mathrm{Spin}^c(n)$-gauge groups over $S^4$