arXiv Analytics

Sign in

arXiv:1908.06284 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Stacking transition in rhombohedral graphite

Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya Novoselov

Published 2019-08-17Version 1

Few layer graphene (FLG) has been recently intensively investigated for its variable electronic properties defined by a local atomic arrangement. While the most natural layers arrangement in FLG is ABA (Bernal) stacking, a metastable ABC (rhombohedral) stacking characterized by a relatively high energy barrier can also occur. When both stacking occur in the same FLG device this results in in-plane heterostructure with a domain wall (DW). We show that ABC stacking in FLG can be controllably and locally turned into ABA stacking by two following approaches. In the first approach, Joule heating was introduced and the transition was characterized by 2D-peak Raman spectra at a submicron spatial resolution. The observed transition was initiated at a small region and then the DW controllably shifted until the entire device became ABA stacked. In the second approach, the transition was achieved by illuminating the ABC region with a train of laser pulses of 790 nm wavelength, while the transition was visualized by transmission electron microscopy in both diffraction and dark field modes. Also, with this approach, a DW was visualized in the dark-field imaging mode, at a nanoscale spatial resolution.

Related articles: Most relevant | Search more
arXiv:2105.08723 [cond-mat.mes-hall] (Published 2021-05-18)
Surface states and quasiparticle interference in Bernal and rhombohedral graphite with and without trigonal warping
arXiv:1504.07812 [cond-mat.mes-hall] (Published 2015-04-29)
Electronic structure of interfaces between hexagonal and rhombohedral graphite
arXiv:1505.05666 [cond-mat.mes-hall] (Published 2015-05-21)
Evolution and crossover from bulk subbands in ABC-stacked graphene to a three-dimensional Dirac cone structure in rhombohedral graphite