arXiv:1908.04833 [math.NT]AbstractReferencesReviewsResources
Twelfth moment of Dirichlet L-functions to prime power moduli
Djordje Milicevic, Daniel White
Published 2019-08-13Version 1
We prove the q-aspect analogue of Heath-Brown's result on the twelfth power moment of the Riemann zeta function for Dirichlet L-functions to odd prime power moduli. Our results rely on the p-adic method of stationary phase for sums of products and complement Nunes' bound for smooth square-free moduli.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1802.05180 [math.NT] (Published 2018-02-14)
The twelfth moment of Dirichlet $L$-functions with smooth moduli
arXiv:math/9812143 [math.NT] (Published 1998-12-24)
A New Representation of the Riemann Zeta Function $ΞΆ(s)$
arXiv:1205.2773 [math.NT] (Published 2012-05-12)
Horizontal Monotonicity of the Modulus of the Riemann Zeta Function and Related Functions