arXiv Analytics

Sign in

arXiv:1907.13031 [math.DS]AbstractReferencesReviewsResources

Dimension theory of Diophantine approximation related to $β$-transformations

Wanlou WU, Lixuan Zheng

Published 2019-07-30Version 1

Let $T_\beta$ be the $\beta$-transformation on $[0,1)$ defined by $$T_\beta(x)=\beta x\text{ mod }1.$$ We study the Diophantine approximation of the orbit of a point $x$ under $T_\beta$. Precisely, for given two positive functions $\psi_1,~\psi_2:\mathbb{N}\rightarrow\mathbb{R}^+$, define $$\mathcal{L}(\psi_1):=\left\{x\in[0,1]:T_\beta^n x<\psi_1(n),\text{ for infinitely many $n\in\mathbb{N}$}\right\},$$ $$\mathcal{U}(\psi_2):=\left\{x\in [0,1]:\forall~N\gg1,~\exists~n\in[0,N],~s.t.~T^n_\beta x<\psi_2(N)\right\},$$ where $\gg$ means large enough. We compute the Hausdorff dimension of the set $\mathcal{L}(\psi_1)\cap\mathcal{U}(\psi_2)$. As a corollary, we estimate the Hausdorff dimension of the set $\mathcal{U}(\psi_2)$.

Related articles: Most relevant | Search more
arXiv:1111.1081 [math.DS] (Published 2011-11-04)
Diophantine approximation by orbits of Markov maps
arXiv:1509.07558 [math.DS] (Published 2015-09-24)
The Hausdorff dimension of quasi-circles: a result of Ruelle and Bowen
arXiv:math/0608002 [math.DS] (Published 2006-07-31)
Hausdorff dimension of the set of points on divergent trajectories of a homogeneous flow on a product space