arXiv Analytics

Sign in

arXiv:1907.12789 [astro-ph.HE]AbstractReferencesReviewsResources

Approaching the black hole by numerical simulations

Christian Fendt

Published 2019-07-30Version 1

Black holes represent extreme conditions of physical laws. Being predicted about a century ago, they are now accepted as astrophysical reality by most of the scientific community. Only recently more direct evidence of their existence has been found - the detection of gravitational waves from black hole mergers and of the shadow of a supermassive black hole in the center of a galaxy. Astrophysical black holes are typically embedded in an active environment which is affected by the strong gravity. When the environmental material emits radiation, this radiation may carry imprints of the black hole that is hosting the radiation source. In order to understand the physical processes that take place in the close neighbourhood of astrophysical black holes, numerical methods and simulations play an essential role. This is simply because the dynamical evolution and the radiative interaction are far too complex in order to allow for an analytic solution of the physical equations. A huge progress has been made over the last decade(s) in the numerical code development, as well as in the computer power that is needed to run these codes. This review tries to summarize the basic questions and methods that are involved in the undertaking of investigating the astrophysics of black holes by numerical means. It is intended for a non-expert audience interested in an overview over this broad field. The review comes along without equations and thus without a detailed expert discussion of the underlying physical processes or numerical specifics. Instead, it intends to illustrate the richness of the field and to motivate for further reading. The review puts some emphasis on magnetohydrodynamic simulations, but also touches radiation transfer and merger simulations, in particular pointing out differences in these approaches.

Comments: 18 pages, 6 figures, 130 references
Journal: 2019, Universe, vol. 5, issue 5, p. 99
Categories: astro-ph.HE
Related articles: Most relevant | Search more
arXiv:1802.08654 [astro-ph.HE] (Published 2018-02-23)
Black Hole Mergers from Globular Clusters Observable by LISA and LIGO: Results from post-Newtonian Binary-Single Scatterings
arXiv:1209.3785 [astro-ph.HE] (Published 2012-09-17)
Hair of astrophysical black holes
arXiv:1906.03871 [astro-ph.HE] (Published 2019-06-10)
Astrophysical Black Holes: A Review